

Rating Laboratories

Results from the Labs21 Program

Paul Mathew, Dale Sartor Lawrence Berkeley National Laboratory Otto van Geet National Renewable Energy Laboratory Sue Reilly

Enermodal Engineering, Inc.

Outline

- Why Laboratories?
- Energy Benchmarking
 - Methods and Metrics
 - Database tool
- Environmental Performance Criteria
 - "LEED for Labs"
- Lessons Learned

Why Laboratories?

- Laboratories are very energy intensive
 - 4 to 6 times as energy intensive as office buildings
- Substantial efficiency opportunities
 - 30%-50% savings over standard practice
- Owner demands to reduce utility costs
 - Typically not speculative lifecycle incentive

But...

Challenges

- Complex functional requirements
 - Health and safety
 - Research requirements
- What is a lab?
 - Chemical vs. biological vs. physical
 - Research vs. teaching vs. manufacturing
 - % lab area

Benchmarking 101

- Metric Selection
 - Site
 - Building
 - System
 - Component
- Metric Normalization
 - Programmatic parameters (e.g. area)
 - Contextual parameters (e.g. climate)

Labs21 Metrics

- Developed by expert group
- Tradeoff in scope vs. ease of data collection

Whole Building	kWh/gsf-yr (elec) Peak W/gsf (elec)	BTU/gsf-yr (site) \$/gsf-yr (site)		
Ventilation	kWh/gsf-yr Peak W/cfm	Peak supply cfm/sf(lab) Avg cfm/peak cfm		
Cooling	kWh/gsf-yr Peak W/gsf	Peak gsf/ton Installed gsf/ton		
Heating	BTU/gsf-yr			
Lighting	kWh/gsf-yr Peak W/gsf	Installed W/sf(lab)		
Process/Plug	kWh/gsf-yr Peak W/gsf	Peak W/sf(lab)		

Normalization

- Some obvious parameters
 - Weather
 - Gross area
 - Lab area
- Some less obvious parameters
 - Ventilation rates
 - Equipment loads
 - Operation schedules

Benchmarking Methods...1

- Simple data filtering provides crude normalization
 - May be adequate for coarse screening, opportunity assessment, goal setting

Facilities located in cool-humid climate zone; standard occupancy hours (<= 14 hrs/day)

Benchmarking Methods...2

- Regression analysis
 - Equation relates normalizing parameters and metric
 - Used in EnergyStar
 - Works well if:
 - There is an adequate representative dataset
 - Dataset includes range of possible efficiencies.
- Lack of adequate dataset for laboratories
 - CBECS data limited by lab area, normalizing parameters
 - Labs21 database collects normalizing parameters, but has limited data

Benchmarking Methods...3

- Simulation-model based benchmarking
 - Model is used to calculate a benchmark (e.g. "ideal" case)
 - Model accounts for normalizing parameters
 - Benchmark is compared to actual energy use

Simulation model

$$e = (A_1 * ei_1) + (A_{n1} * ei_{n1})$$

A_I: Actual laboratory area

A_{nl}: Actual non-laboratory area

ei_l: benchmark energy use intensity for lab module

ei_{nl}: benchmark energy use intensity for non-lab module

EUI vs. EER

EER improves "apples to apples" comparison

Facilities located in cool-humid climate zone; standard occupancy hours (<= 14 hrs/day)

Labs21 Tool

- National database of lab energy use data
 - Web-based input and analysis
 - About 50 facilities Building and system level data
- Data Input
 - Users input data
 - All data reviewed before being accepted
 - Data remains anonymous to other users
- Analysis
 - Benchmarking using metrics with data filtering
 - Model-based normalization currently not integrated with tool

Labs21 Benchmarking Tool - Microsoft Internet Explorer				X	
Ē	File Edit View Favorites Tools Help				li i
. (🔾 Back 🔻 🕑 🔻 🙎 🐔 🔎 Sear	rch 梒 Favorites 🍳	Media 🧹	❷ 🗟 - 🎍	>>
į Ac	ddress <equation-block> http://www.dc.lbl.gov/Labs21/StepThreeP3.</equation-block>	php		∨ →	50
	Location*	Berkeley CA			^
	Zip Code (5 digit)*	94720			
	Lab Use (most prevalent)*	Research/Develop	ment 💌		
	Lab Type (most prevalent)*	Combination/Others	~		
	Number of Buildings	1			
	Gross Area (sq. ft.)*	55903			
	Lab Area (sq. ft.)* (Area requiring 100% outside air)	16999			
	Total Daily Occupied Hours* (typical weekday)	12			≣
	Year Built (or major renovations)	1963			
- ۷	Whole Building Energy Use Data (include campus chilled water, steam)		Measure	d Estimated	
	Annual Electric Use (kWh)*	1772000	•	0	
	Annual Fuel Use (therms)*	83500	•	0	
	Peak Electric Demand (kW)*	347	•	0	
	Annual Energy Utility Cost (\$)*	159000	•	0	
	Does facility use CHP (Cogen) system?	No 💌			
\	entilation System Energy Use Data		Measure	d Estimated	
	Annual Electric Use (kWh)	549000	0	•	
	Peak Electrical Demand (kW) (sum of exhaust, supply, and recirc fans)	63	0	•	
	Peak Airflow (cfm) (sum of exhaust, supply, and recirc fans)	215000	0	•	
	Average Airflow (cfm) (sum of exhaust, supply, and recirc fans)	180000	0	•	
	Peak Supply Airflow for Lab Area (cfm)	0	0	•	~
a	Done		•	Internet	

System Efficiency Metrics

System metrics especially useful in labs

Standard, good, better benchmarks as defined in

[&]quot;How-low Can You go: Low-Pressure Drop Laboratory Design" by Dale Sartor and John Weale

Rating Sustainability

- Labs21 Environmental Performance Criteria
 - Point-based rating system
 - Leverages LEED 2.1
 - Adds new credits and prerequisites
 - Modifies existing credits and prerequisites
 - Over 40 industry volunteers
 - Version 2 released 2002

EPC: Extending LEED

Emphasis on lab energy use, health & safety

Sustainable sites	CFD or wind tunnel modeling of air effluents Containment controls for liquid effluents	
Water efficiency	Eliminate "once-through" cooling Process water efficiency	
Energy and atmosphere	Optimize ventilation requirements Energy efficiency for lab systems Co-generation Laboratory plug-in equipment Right-sizing HVAC	
Materials and resources	Tracking and managing hazardous materials	
Indoor environmental quality	Meet ANSI-Z9.5 ventilation requirements CFD modeling of indoor airflow Fume hood commissioning per ASHRAE-110 Self-identifying and failsafe alarm systems	

Energy Efficiency Credit

- "Points" for % reductions below ASHRAE 90.1 base
- Current Limitations (LEED/ASHRAE 90.1):
 - Fumehoods excluded from % reduction
 - Fan power limitations unrealistic for labs
 - Strategies not rewarded
 - High performance fumehoods
 - Minimizing reheat
 - Occupancy controls (?)
 - Low pressure drop design (?)
 - Cascading air supply (?)

Energy Efficiency Credit

- Labs21 modeling guidelines
 - "Supplement" to ASHRAE 90.1
 - Properly account for lab energy efficiency strategies
 - e.g. reheat due to plug load schedule diversity

Equipment W/sf for lab modules in a university lab building

Toward LEED for Labs

- EPC and LEED
 - Labs21 does not provide certification
 - EPC used for self-certification in many projects
 - Effective in lab design charrettes
 - Many EPC credits used for LEED innovation points
- USGBC developing LEED Application Guide for Laboratories (LEED-AGL)
 - Uses EPC as starting point
 - Draft expected Nov 04; Final expected mid-2005

Lessons Learned

- Significant efficiency opportunities in labs
- Need to adapt benchmarking and rating systems
 - Allow for diversity of functional requirements
 - Simulation-based benchmarking preferred
 - Consider energy use of core systems
 - System level metrics important
 - Ensure that rating approach accounts for all major efficiency strategies
- Don't ignore "niche" buildings they can add up!

www.labs21century.gov

PAMathew@lbl.gov